首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7597篇
  免费   2110篇
  国内免费   2605篇
测绘学   1253篇
大气科学   1053篇
地球物理   1410篇
地质学   5138篇
海洋学   1358篇
天文学   115篇
综合类   666篇
自然地理   1319篇
  2024年   39篇
  2023年   156篇
  2022年   464篇
  2021年   524篇
  2020年   382篇
  2019年   440篇
  2018年   442篇
  2017年   412篇
  2016年   401篇
  2015年   503篇
  2014年   503篇
  2013年   619篇
  2012年   662篇
  2011年   765篇
  2010年   771篇
  2009年   760篇
  2008年   753篇
  2007年   709篇
  2006年   647篇
  2005年   561篇
  2004年   427篇
  2003年   308篇
  2002年   309篇
  2001年   279篇
  2000年   208篇
  1999年   91篇
  1998年   34篇
  1997年   21篇
  1996年   22篇
  1995年   5篇
  1994年   15篇
  1993年   9篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1957年   6篇
  1948年   1篇
  1944年   1篇
  1942年   3篇
  1940年   1篇
  1937年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Fengyun-3 E(FY-3E),the world’s first early-morning-orbit meteorological satellite for civil use,was launched successfully at the Jiuquan Satellite Launch Center on 5 July 2021.The FY-3E satellite will fill the vacancy of the global early-morning-orbit satellite observation,working together with the FY-3C and FY-3D satellites to achieve the data coverage of early morning,morning,and afternoon orbits.The combination of these three satellites will provide global data coverage for numerical weather prediction(NWP)at 6-hour intervals,effectively improving the accuracy and time efficiency of global NWP,which is of great significance to perfect the global earth observing system.In this article,the background and meteorological requirements for the early-morning-orbit satellite are reviewed,and the specifications of the FY-3E satellite,as well as the characteristics of the onboard instrumentation for earth observations,are also introduced.In addition,the ground segment and the retrieved geophysical products are also presented.It is believed that the NWP communities will significantly benefit from an optimal temporal distribution of observations provided by the early morning,mid-morning,and afternoon satellite missions.Further benefits are expected in numerous applications such as the monitoring of severe weather/climate events,the development of improved sampling designs of the diurnal cycle for accurate climate data records,more efficient monitoring of air quality by thermal infrared remote sensing,and the quasicontinuous monitoring of the sun for space weather and climate.  相似文献   
92.
甲藻孢囊可以为赤潮提供种源, 还可用于指示海区富营养化状态。以往对甲藻孢囊分布的研究多集中于开放性水域和自然形成的海湾中, 在半封闭性人工海湾中的研究较少。梅山湾原属南北开放水域, 但于2012~2017年在向陆侧建设了北坝和南坝, 使其成为半封闭式人工海湾。通过对梅山湾内外海域采集到的6份表层沉积物样品分析, 共鉴定出37种甲藻孢囊, 其丰度介于237~1 054 cysts/g。甲藻孢囊平均丰度湾内高于湾外, 推测是筑堤后湾内水动力减弱, 悬浮物质浓度降低, 水体透明度升高, 水中颗粒物质沉积速率降低和水体富营养化所导致。调查海域甲藻孢囊物种多样性指数介于1.63~2.47, 均匀度指数介于0.58~0.82, 两者湾外均显著高于湾内, 反映出湾内生态系统稳定性更弱, 发生赤潮的可能性更高。研究共检出16种赤潮种和9种有毒甲藻孢囊, 产毒种及赤潮种丰度和种类占比湾内都高于湾外, 优势种有原多甲藻(Protoperidinium sp.)、美利坚原多甲藻(Protoperidinium americanum)、透镜翼甲藻(Diplopsalis lenticula)、微小亚历山大藻(Alexandrium minutum)、链状裸甲藻(Gymnodinium catenatum)和锥状斯氏藻(Scrippsiella trochoidea)。“筑堤效应”加剧了湾内外表层沉积物中甲藻孢囊分布的差异性, 也加重了湾内有毒有害赤潮发生的风险, 故应重视对湾内有毒有害甲藻的监测。  相似文献   
93.
The prolonged mei-yu/baiu system with anomalous precipitation in the year 2020 has swollen many rivers and lakes,caused flash flooding,urban flooding and landslides,and consistently wreaked havoc across large swathes of China,particularly in the Yangtze River basin.Significant precipitation and flooding anomalies have already been seen in magnitude and extension so far this year,which have been exerting much higher pressure on emergency responses in flood control and mitigation than in other years,even though a rainy season with multiple ongoing serious flood events in different provinces is not that uncommon in China.Instead of delving into the causes of the uniqueness of this year’s extreme precipitation-flooding situation,which certainly warrants in-depth exploration,in this article we provide a short view toward a more general hydrometeorological solution to this annual nationwide problem.A“glocal”(global to local)hydrometeorological solution for floods(GHS-F)is considered to be critical for better preparedness,mitigation,and management of different types of significant precipitation-caused flooding,which happen extensively almost every year in many countries such as China,India and the United States.Such a GHS-F model is necessary from both scientific and operational perspectives,with the strength in providing spatially consistent flood definitions and spatially distributed flood risk classification considering the heterogeneity in vulnerability and resilience across the entire domain.Priorities in the development of such a GHS-F are suggested,emphasizing the user’s requirements and needs according to practical experiences with various flood response agencies.  相似文献   
94.
采用中国地面站气温逐日观测资料、NOAA全球逐日海表温度资料,及NCEP/NCAR的全球日均再分析资料,研究了2014年持续性低温的三维结构及大尺度环流异常。结果表明,2014年的低温异常,除了在陆地上区域性地出现在长江流域,还以大尺度带状的形式、从陆地延伸到海洋上。这种带状异常不只出现在近地面,在大气各层(925~500 hPa)都能看到。分析指出,大气中的这个低温带主要由高纬大气环流异常造成。在位势高度场上,最重要的异常出现在高纬60°N,有呈带状的位势高度正距平,它引导(距平意义上的)偏北气流从正北和东北偏东方向侵入,在其南侧形成一带状的偏低温区。大气各层均呈现出这种在高纬有位势高度正距平、相应地在稍南的低纬(40°N)有位势高度负距平、两者之间为低温区的分布特征。从低层往上,这种配置型式整体表现出由南往北的倾斜,其垂直剖面表现为距平意义上的、大尺度、类似于锋面的倾斜结构。文中用简单的概念模型对此进行理解,认为这种结构是由大气动力异常和热力异常相互影响、共同作用而形成的。  相似文献   
95.
依据地质、航磁等资料,结合实测岩石物性资料,以1∶250 000重力资料为基础对祁连山地区(张掖、刚察地区)进行综合研究。研究地质构造与地球物理特征,划分了大地构造单元,探讨了隐伏与半隐伏岩体分布。该区域经多年的重力工作,勘探面积已近3万多km2,根据重力资料研究布格重力场特征并进行分区; 对地质构造单元重新划分,对主要断裂进行探讨; 圈定隐伏与半隐伏岩体,推断其空间展布特征,并对其解释。结果表明: 祁连山地区地壳密度结构横向分区、纵向分层明显,布格重力异常场的分区特征与地质构造分区特征基本一致。结合2.5D重力剖面反演印证了新的推测结果,为综合地质、地球物理找矿提供参考。  相似文献   
96.
地球化学测量成果被广泛而成熟地运用在矿产勘查工作中,为明确张家口崇礼区北部成矿、找矿的地球化学指示信息,对该区水系沉积物测量及异常查证成果进行了综合分析。通过计算元素富集系数和变异系数、开展R型聚类分析、统计化探异常区岩石的地质年代、对比该区化探异常及已知矿床与典型矿床的成矿要素,从而推断了该区找矿主攻元素为Ag、Pb、Zn、Mo、Cd,且Ag、Pb、Zn和Mo、W 2组元素分别具有共伴生关系,指出该区化探异常主要受燕山期岩浆热液控制。综合分析认为,本区找矿模型为蔡家营式次火山-热液型多金属矿床,具有寻找次火山-热液型Ag、Pb、Zn、Mo多金属矿床的潜力。  相似文献   
97.
BCC模式及其开展的CMIP6试验介绍   总被引:2,自引:0,他引:2  
世界气候研究计划(WCRP)正在组织实施第六次国际耦合模式比较计划(CMIP6),国家气候中心作为参与单位之一,通过近几年的模式研发,推出3个最新模式版本参与该计划,包括含有气溶胶化学模块的地球系统模式BCC-ESM1.0、中等分辨率气候模式BCC-CSM2-MR和高分辨率气候模式BCC-CSM2-HR。除了CMIP6中的气候诊断、评估和描述试验(DECK)和历史气候模拟试验(Historical),这3个模式共将参与CMIP6中的10个模式比较子计划。文中主要介绍这3个模式的基本情况以及所开展的CMIP试验,并对BCC-CSM2-MR模式的Historical试验结果进行简要评估,为试验数据使用者提供参考。  相似文献   
98.
陈诚  牛涛  陆尔 《大气科学学报》2019,42(2):267-279
采用1981年1月—2017年2月国家气象信息中心雾、霾数据集资料、同期NCEP/NCAR再分析资料以及哈德来中心的海冰资料,分析了秋冬季喀拉海和巴伦支海海冰变化与东亚冬季风暨中国东部冬季雾和霾日数变化特征之间的关系。研究结果表明,喀拉海和巴伦支海海冰对亚洲区中高纬纬向环流有重要影响,秋季海冰异常偏少是冬季亚洲区中高纬异常纬向环流形成的诱因之一。该地区秋季海冰偏少年,冬季亚洲中高纬地区纬向环流异常偏强,东亚大槽偏弱,影响我国东部地区的东亚冬季风减弱,这为大气污染物在水平方向上的聚集提供了有利条件,同时在海冰偏少年,对流层从中层向下均为正温度距平,与地表温差减小,不利于对流发展,使得大气的状况变得更加稳定,不利于大气污染物在垂直方向上的扩散,水平和垂直方向上的共同作用导致中国东部地区易发生霾天气过程。虽然喀拉海和巴伦支海海冰是影响中国东部地区冬季霾过程发生的重要因子之一,但其对冬季中国东部雾天气发生日数多寡的影响并不显著。亚洲区纬向环流指数相比经向环流指数更能反映中国东部地区冬季雾-霾日数的变化,冬季亚洲中高纬纬向环流越强,中国东部地区雾-霾日数越多。  相似文献   
99.
承德市臭氧污染气象条件预报方法研究   总被引:1,自引:0,他引:1  
利用2014-2016年承德市环境监测站和气象站的数据,分析了气象条件对承德市O3-8h浓度的影响,探讨了臭氧污染气象条件的预报方法。结果表明:4-7月是承德市O3-8h浓度较高的月份,O3浓度的日变化特征为午后浓度高而夜间浓度低;O3污染的天气形势为500 hPa受高压脊和偏西气流影响,850 hPa有强暖平流和20℃以上的高温,地面受低压前部和高压后部之间的偏南气流影响;有利于O3-8h出现高浓度的气象因子为日平均气温大于23℃、日最高气温大于28℃、日平均海平面气压995-1007 hPa、日平均水汽压18-28 hPa、偏南风大于1 m·s-1。利用气象因子综合评分建立臭氧污染指数,与O3-8h浓度的相关系数高达0.7553,说明臭氧污染指数能较好地预报臭氧污染天气。  相似文献   
100.
徐淮地区丰山花岗闪长斑岩和蔡山石英闪长玢岩的岩石地球化学、Sr-Nd-Hf同位素和石榴石的矿物化学研究对探讨华北克拉通东南缘早白垩世高镁埃达克质岩的岩石成因和构造演化具有重要意义。结果表明,丰山花岗闪长斑岩和蔡山石英闪长玢岩具高SiO_2(60.98%~67.88%)、富Al_2O_3(14.37%~15.04%)以及高的Na_2O/K_2O比值(1.58~2.24)和Mg~#值(57~66)的特征;富集LILE(Rb、Ba、Sr)和LREE,亏损HFSE(Nb、Ta、Ti)和HREE,具有Pb正异常和弱的Eu异常;结合高的Sr含量(579×10~(-6)~778×10~(-6))以及Sr/Y(33~69)和(La/Yb)_N比值(8.63~13.7),低的Y(10.5×10~(-6)~17.8×10~(-6))和Yb含量(0.74×10~(-6)~1.17×10~(-6)),暗示它们属于高镁埃达克质岩。丰山和蔡山埃达克质岩石的初始~(87)Sr/~(86)Sr比值介于0.7079~0.7086之间,ε_(Nd)(t)值变化于-10.77~-7.18之间,t_(DM2)=1504~1793Ma;岩浆锆石的ε_(Hf)(t)值为-14.2~-5.3,t_(DM2)=2101~2898Ma。徐淮地区早白垩世利国、班井、夹沟高镁埃达克质岩石中岩浆锆石的ε_(Hf)(t)值分别介于-13.4~-7.0、-13.4~-7.9和-15.9~-4.5之间,它们的t_(DM2)分别变化于2248~2825Ma、2331~2824Ma和2030~3048Ma之间。徐淮地区丰山和蔡山高镁埃达克质岩的Sr-Nd-Hf同位素组成和丰山花岗闪长斑岩中铁铝榴石残留晶的存在,结合它们高的Pb同位素组成和继承锆石U-Pb年代学暗示,丰山和蔡山高镁埃达克质岩浆主要起源于俯冲断离的扬子克拉通石榴辉石岩相下地壳物质熔融的熔体与地幔橄榄岩的反应,同时有拆沉的华北克拉通基底物质的参与,形成于华北克拉通东部岩石圈减薄的伸展构造背景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号